ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexco Unicode version

Theorem abrexco 5398
Description: Composition of two image maps  C (
y ) and  B ( w ). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
abrexco.1  |-  B  e. 
_V
abrexco.2  |-  ( y  =  B  ->  C  =  D )
Assertion
Ref Expression
abrexco  |-  { x  |  E. y  e.  {
z  |  E. w  e.  A  z  =  B } x  =  C }  =  { x  |  E. w  e.  A  x  =  D }
Distinct variable groups:    y, A, z   
y, B, z    w, C    y, D    x, w, y    z, w
Allowed substitution hints:    A( x, w)    B( x, w)    C( x, y, z)    D( x, z, w)

Proof of Theorem abrexco
StepHypRef Expression
1 df-rex 2312 . . . . 5  |-  ( E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C  <->  E. y ( y  e. 
{ z  |  E. w  e.  A  z  =  B }  /\  x  =  C ) )
2 vex 2560 . . . . . . . . 9  |-  y  e. 
_V
3 eqeq1 2046 . . . . . . . . . 10  |-  ( z  =  y  ->  (
z  =  B  <->  y  =  B ) )
43rexbidv 2327 . . . . . . . . 9  |-  ( z  =  y  ->  ( E. w  e.  A  z  =  B  <->  E. w  e.  A  y  =  B ) )
52, 4elab 2687 . . . . . . . 8  |-  ( y  e.  { z  |  E. w  e.  A  z  =  B }  <->  E. w  e.  A  y  =  B )
65anbi1i 431 . . . . . . 7  |-  ( ( y  e.  { z  |  E. w  e.  A  z  =  B }  /\  x  =  C )  <->  ( E. w  e.  A  y  =  B  /\  x  =  C ) )
7 r19.41v 2466 . . . . . . 7  |-  ( E. w  e.  A  ( y  =  B  /\  x  =  C )  <->  ( E. w  e.  A  y  =  B  /\  x  =  C )
)
86, 7bitr4i 176 . . . . . 6  |-  ( ( y  e.  { z  |  E. w  e.  A  z  =  B }  /\  x  =  C )  <->  E. w  e.  A  ( y  =  B  /\  x  =  C ) )
98exbii 1496 . . . . 5  |-  ( E. y ( y  e. 
{ z  |  E. w  e.  A  z  =  B }  /\  x  =  C )  <->  E. y E. w  e.  A  ( y  =  B  /\  x  =  C ) )
101, 9bitri 173 . . . 4  |-  ( E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C  <->  E. y E. w  e.  A  ( y  =  B  /\  x  =  C ) )
11 rexcom4 2577 . . . 4  |-  ( E. w  e.  A  E. y ( y  =  B  /\  x  =  C )  <->  E. y E. w  e.  A  ( y  =  B  /\  x  =  C ) )
1210, 11bitr4i 176 . . 3  |-  ( E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C  <->  E. w  e.  A  E. y ( y  =  B  /\  x  =  C ) )
13 abrexco.1 . . . . 5  |-  B  e. 
_V
14 abrexco.2 . . . . . 6  |-  ( y  =  B  ->  C  =  D )
1514eqeq2d 2051 . . . . 5  |-  ( y  =  B  ->  (
x  =  C  <->  x  =  D ) )
1613, 15ceqsexv 2593 . . . 4  |-  ( E. y ( y  =  B  /\  x  =  C )  <->  x  =  D )
1716rexbii 2331 . . 3  |-  ( E. w  e.  A  E. y ( y  =  B  /\  x  =  C )  <->  E. w  e.  A  x  =  D )
1812, 17bitri 173 . 2  |-  ( E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C  <->  E. w  e.  A  x  =  D )
1918abbii 2153 1  |-  { x  |  E. y  e.  {
z  |  E. w  e.  A  z  =  B } x  =  C }  =  { x  |  E. w  e.  A  x  =  D }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator