MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1 Structured version   Visualization version   GIF version

Theorem cantnflem1 8469
Description: Lemma for cantnf 8473. This part of the proof is showing uniqueness of the Cantor normal form. We already know that the relation 𝑇 is a strict order, but we haven't shown it is a well-order yet. But being a strict order is enough to show that two distinct 𝐹, 𝐺 are 𝑇 -related as 𝐹 < 𝐺 or 𝐺 < 𝐹, and WLOG assuming that 𝐹 < 𝐺, we show that CNF respects this order and maps these two to different ordinals. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
cantnflem1.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐺‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnflem1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺))
Distinct variable groups:   𝑘,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑘,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑘   𝑘,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑘,𝑥,𝑦,𝑧   𝐺,𝑐,𝑘,𝑤,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑘,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤,𝑘,𝑐)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . . . 6 (𝐺 supp ∅) ∈ V
2 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
32oion 8324 . . . . . 6 ((𝐺 supp ∅) ∈ V → dom 𝑂 ∈ On)
41, 3mp1i 13 . . . . 5 (𝜑 → dom 𝑂 ∈ On)
5 uniexg 6853 . . . . 5 (dom 𝑂 ∈ On → dom 𝑂 ∈ V)
6 sucidg 5720 . . . . 5 ( dom 𝑂 ∈ V → dom 𝑂 ∈ suc dom 𝑂)
74, 5, 63syl 18 . . . 4 (𝜑 dom 𝑂 ∈ suc dom 𝑂)
8 cantnfs.s . . . . . . . . . 10 𝑆 = dom (𝐴 CNF 𝐵)
9 cantnfs.a . . . . . . . . . 10 (𝜑𝐴 ∈ On)
10 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
11 oemapval.t . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
12 oemapval.f . . . . . . . . . 10 (𝜑𝐹𝑆)
13 oemapval.g . . . . . . . . . 10 (𝜑𝐺𝑆)
14 oemapvali.r . . . . . . . . . 10 (𝜑𝐹𝑇𝐺)
15 oemapvali.x . . . . . . . . . 10 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
168, 9, 10, 11, 12, 13, 14, 15cantnflem1a 8465 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐺 supp ∅))
17 n0i 3879 . . . . . . . . 9 (𝑋 ∈ (𝐺 supp ∅) → ¬ (𝐺 supp ∅) = ∅)
1816, 17syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐺 supp ∅) = ∅)
19 suppssdm 7195 . . . . . . . . . . . 12 (𝐺 supp ∅) ⊆ dom 𝐺
208, 9, 10cantnfs 8446 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
2113, 20mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
2221simpld 474 . . . . . . . . . . . . 13 (𝜑𝐺:𝐵𝐴)
23 fdm 5964 . . . . . . . . . . . . 13 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
2422, 23syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐵)
2519, 24syl5sseq 3616 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
2610, 25ssexd 4733 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ∈ V)
278, 9, 10, 2, 13cantnfcl 8447 . . . . . . . . . . 11 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω))
2827simpld 474 . . . . . . . . . 10 (𝜑 → E We (𝐺 supp ∅))
292oien 8326 . . . . . . . . . 10 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → dom 𝑂 ≈ (𝐺 supp ∅))
3026, 28, 29syl2anc 691 . . . . . . . . 9 (𝜑 → dom 𝑂 ≈ (𝐺 supp ∅))
31 breq1 4586 . . . . . . . . . 10 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐺 supp ∅) ↔ ∅ ≈ (𝐺 supp ∅)))
32 ensymb 7890 . . . . . . . . . . 11 (∅ ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) ≈ ∅)
33 en0 7905 . . . . . . . . . . 11 ((𝐺 supp ∅) ≈ ∅ ↔ (𝐺 supp ∅) = ∅)
3432, 33bitri 263 . . . . . . . . . 10 (∅ ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) = ∅)
3531, 34syl6bb 275 . . . . . . . . 9 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) = ∅))
3630, 35syl5ibcom 234 . . . . . . . 8 (𝜑 → (dom 𝑂 = ∅ → (𝐺 supp ∅) = ∅))
3718, 36mtod 188 . . . . . . 7 (𝜑 → ¬ dom 𝑂 = ∅)
3827simprd 478 . . . . . . . 8 (𝜑 → dom 𝑂 ∈ ω)
39 nnlim 6970 . . . . . . . 8 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4038, 39syl 17 . . . . . . 7 (𝜑 → ¬ Lim dom 𝑂)
41 ioran 510 . . . . . . 7 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4237, 40, 41sylanbrc 695 . . . . . 6 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
432oicl 8317 . . . . . . 7 Ord dom 𝑂
44 unizlim 5761 . . . . . . 7 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4543, 44mp1i 13 . . . . . 6 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4642, 45mtbird 314 . . . . 5 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
47 orduniorsuc 6922 . . . . . . 7 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
4843, 47mp1i 13 . . . . . 6 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
4948ord 391 . . . . 5 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5046, 49mpd 15 . . . 4 (𝜑 → dom 𝑂 = suc dom 𝑂)
517, 50eleqtrrd 2691 . . 3 (𝜑 dom 𝑂 ∈ dom 𝑂)
522oiiso 8325 . . . . . . . 8 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
5326, 28, 52syl2anc 691 . . . . . . 7 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
54 isof1o 6473 . . . . . . 7 (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
5553, 54syl 17 . . . . . 6 (𝜑𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
56 f1ocnv 6062 . . . . . 6 (𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) → 𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂)
57 f1of 6050 . . . . . 6 (𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐺 supp ∅)⟶dom 𝑂)
5855, 56, 573syl 18 . . . . 5 (𝜑𝑂:(𝐺 supp ∅)⟶dom 𝑂)
5958, 16ffvelrnd 6268 . . . 4 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
60 elssuni 4403 . . . 4 ((𝑂𝑋) ∈ dom 𝑂 → (𝑂𝑋) ⊆ dom 𝑂)
6159, 60syl 17 . . 3 (𝜑 → (𝑂𝑋) ⊆ dom 𝑂)
6250, 38eqeltrrd 2689 . . . . 5 (𝜑 → suc dom 𝑂 ∈ ω)
63 peano2b 6973 . . . . 5 ( dom 𝑂 ∈ ω ↔ suc dom 𝑂 ∈ ω)
6462, 63sylibr 223 . . . 4 (𝜑 dom 𝑂 ∈ ω)
65 eleq1 2676 . . . . . . . 8 (𝑦 = dom 𝑂 → (𝑦 ∈ dom 𝑂 dom 𝑂 ∈ dom 𝑂))
66 sseq2 3590 . . . . . . . 8 (𝑦 = dom 𝑂 → ((𝑂𝑋) ⊆ 𝑦 ↔ (𝑂𝑋) ⊆ dom 𝑂))
6765, 66anbi12d 743 . . . . . . 7 (𝑦 = dom 𝑂 → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) ↔ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ dom 𝑂)))
68 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = dom 𝑂 → (𝑂𝑦) = (𝑂 dom 𝑂))
6968sseq2d 3596 . . . . . . . . . . 11 (𝑦 = dom 𝑂 → (𝑥 ⊆ (𝑂𝑦) ↔ 𝑥 ⊆ (𝑂 dom 𝑂)))
7069ifbid 4058 . . . . . . . . . 10 (𝑦 = dom 𝑂 → if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))
7170mpteq2dv 4673 . . . . . . . . 9 (𝑦 = dom 𝑂 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅)))
7271fveq2d 6107 . . . . . . . 8 (𝑦 = dom 𝑂 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))))
73 suceq 5707 . . . . . . . . 9 (𝑦 = dom 𝑂 → suc 𝑦 = suc dom 𝑂)
7473fveq2d 6107 . . . . . . . 8 (𝑦 = dom 𝑂 → (𝐻‘suc 𝑦) = (𝐻‘suc dom 𝑂))
7572, 74eleq12d 2682 . . . . . . 7 (𝑦 = dom 𝑂 → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂)))
7667, 75imbi12d 333 . . . . . 6 (𝑦 = dom 𝑂 → (((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ (( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ dom 𝑂) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂))))
7776imbi2d 329 . . . . 5 (𝑦 = dom 𝑂 → ((𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦))) ↔ (𝜑 → (( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ dom 𝑂) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂)))))
78 eleq1 2676 . . . . . . . 8 (𝑦 = ∅ → (𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂))
79 sseq2 3590 . . . . . . . 8 (𝑦 = ∅ → ((𝑂𝑋) ⊆ 𝑦 ↔ (𝑂𝑋) ⊆ ∅))
8078, 79anbi12d 743 . . . . . . 7 (𝑦 = ∅ → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) ↔ (∅ ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ ∅)))
81 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑂𝑦) = (𝑂‘∅))
8281sseq2d 3596 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥 ⊆ (𝑂𝑦) ↔ 𝑥 ⊆ (𝑂‘∅)))
8382ifbid 4058 . . . . . . . . . 10 (𝑦 = ∅ → if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))
8483mpteq2dv 4673 . . . . . . . . 9 (𝑦 = ∅ → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅)))
8584fveq2d 6107 . . . . . . . 8 (𝑦 = ∅ → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))))
86 suceq 5707 . . . . . . . . 9 (𝑦 = ∅ → suc 𝑦 = suc ∅)
8786fveq2d 6107 . . . . . . . 8 (𝑦 = ∅ → (𝐻‘suc 𝑦) = (𝐻‘suc ∅))
8885, 87eleq12d 2682 . . . . . . 7 (𝑦 = ∅ → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))) ∈ (𝐻‘suc ∅)))
8980, 88imbi12d 333 . . . . . 6 (𝑦 = ∅ → (((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∅ ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))) ∈ (𝐻‘suc ∅))))
90 eleq1 2676 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦 ∈ dom 𝑂𝑢 ∈ dom 𝑂))
91 sseq2 3590 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑂𝑋) ⊆ 𝑦 ↔ (𝑂𝑋) ⊆ 𝑢))
9290, 91anbi12d 743 . . . . . . 7 (𝑦 = 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) ↔ (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)))
93 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = 𝑢 → (𝑂𝑦) = (𝑂𝑢))
9493sseq2d 3596 . . . . . . . . . . 11 (𝑦 = 𝑢 → (𝑥 ⊆ (𝑂𝑦) ↔ 𝑥 ⊆ (𝑂𝑢)))
9594ifbid 4058 . . . . . . . . . 10 (𝑦 = 𝑢 → if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))
9695mpteq2dv 4673 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))
9796fveq2d 6107 . . . . . . . 8 (𝑦 = 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))))
98 suceq 5707 . . . . . . . . 9 (𝑦 = 𝑢 → suc 𝑦 = suc 𝑢)
9998fveq2d 6107 . . . . . . . 8 (𝑦 = 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc 𝑢))
10097, 99eleq12d 2682 . . . . . . 7 (𝑦 = 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)))
10192, 100imbi12d 333 . . . . . 6 (𝑦 = 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢))))
102 eleq1 2676 . . . . . . . 8 (𝑦 = suc 𝑢 → (𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂))
103 sseq2 3590 . . . . . . . 8 (𝑦 = suc 𝑢 → ((𝑂𝑋) ⊆ 𝑦 ↔ (𝑂𝑋) ⊆ suc 𝑢))
104102, 103anbi12d 743 . . . . . . 7 (𝑦 = suc 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) ↔ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ suc 𝑢)))
105 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = suc 𝑢 → (𝑂𝑦) = (𝑂‘suc 𝑢))
106105sseq2d 3596 . . . . . . . . . . 11 (𝑦 = suc 𝑢 → (𝑥 ⊆ (𝑂𝑦) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢)))
107106ifbid 4058 . . . . . . . . . 10 (𝑦 = suc 𝑢 → if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))
108107mpteq2dv 4673 . . . . . . . . 9 (𝑦 = suc 𝑢 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅)))
109108fveq2d 6107 . . . . . . . 8 (𝑦 = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))))
110 suceq 5707 . . . . . . . . 9 (𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢)
111110fveq2d 6107 . . . . . . . 8 (𝑦 = suc 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc suc 𝑢))
112109, 111eleq12d 2682 . . . . . . 7 (𝑦 = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
113104, 112imbi12d 333 . . . . . 6 (𝑦 = suc 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
114 f1ocnvfv2 6433 . . . . . . . . . . . . 13 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
11555, 16, 114syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
116115sseq2d 3596 . . . . . . . . . . 11 (𝜑 → (𝑥 ⊆ (𝑂‘(𝑂𝑋)) ↔ 𝑥𝑋))
117116ifbid 4058 . . . . . . . . . 10 (𝜑 → if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅) = if(𝑥𝑋, (𝐹𝑥), ∅))
118117mpteq2dv 4673 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅)))
119118fveq2d 6107 . . . . . . . 8 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))))
120 cantnflem1.h . . . . . . . . 9 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐺‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
1218, 9, 10, 11, 12, 13, 14, 15, 2, 120cantnflem1d 8468 . . . . . . . 8 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)))
122119, 121eqeltrd 2688 . . . . . . 7 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)))
123 ss0 3926 . . . . . . . . . . . . . 14 ((𝑂𝑋) ⊆ ∅ → (𝑂𝑋) = ∅)
124123fveq2d 6107 . . . . . . . . . . . . 13 ((𝑂𝑋) ⊆ ∅ → (𝑂‘(𝑂𝑋)) = (𝑂‘∅))
125124sseq2d 3596 . . . . . . . . . . . 12 ((𝑂𝑋) ⊆ ∅ → (𝑥 ⊆ (𝑂‘(𝑂𝑋)) ↔ 𝑥 ⊆ (𝑂‘∅)))
126125ifbid 4058 . . . . . . . . . . 11 ((𝑂𝑋) ⊆ ∅ → if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))
127126mpteq2dv 4673 . . . . . . . . . 10 ((𝑂𝑋) ⊆ ∅ → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅)))
128127fveq2d 6107 . . . . . . . . 9 ((𝑂𝑋) ⊆ ∅ → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))))
129 suceq 5707 . . . . . . . . . . 11 ((𝑂𝑋) = ∅ → suc (𝑂𝑋) = suc ∅)
130123, 129syl 17 . . . . . . . . . 10 ((𝑂𝑋) ⊆ ∅ → suc (𝑂𝑋) = suc ∅)
131130fveq2d 6107 . . . . . . . . 9 ((𝑂𝑋) ⊆ ∅ → (𝐻‘suc (𝑂𝑋)) = (𝐻‘suc ∅))
132128, 131eleq12d 2682 . . . . . . . 8 ((𝑂𝑋) ⊆ ∅ → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))) ∈ (𝐻‘suc ∅)))
133132adantl 481 . . . . . . 7 ((∅ ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ ∅) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))) ∈ (𝐻‘suc ∅)))
134122, 133syl5ibcom 234 . . . . . 6 (𝜑 → ((∅ ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹𝑥), ∅))) ∈ (𝐻‘suc ∅)))
135 ordelon 5664 . . . . . . . . . . . . 13 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
13643, 59, 135sylancr 694 . . . . . . . . . . . 12 (𝜑 → (𝑂𝑋) ∈ On)
137136adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
13843a1i 11 . . . . . . . . . . . 12 (𝜑 → Ord dom 𝑂)
139 ordelon 5664 . . . . . . . . . . . 12 ((Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
140138, 139sylan 487 . . . . . . . . . . 11 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
141 onsseleq 5682 . . . . . . . . . . 11 (((𝑂𝑋) ∈ On ∧ suc 𝑢 ∈ On) → ((𝑂𝑋) ⊆ suc 𝑢 ↔ ((𝑂𝑋) ∈ suc 𝑢 ∨ (𝑂𝑋) = suc 𝑢)))
142137, 140, 141syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) ⊆ suc 𝑢 ↔ ((𝑂𝑋) ∈ suc 𝑢 ∨ (𝑂𝑋) = suc 𝑢)))
143 sucelon 6909 . . . . . . . . . . . . . . 15 (𝑢 ∈ On ↔ suc 𝑢 ∈ On)
144140, 143sylibr 223 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On)
145 eloni 5650 . . . . . . . . . . . . . 14 (𝑢 ∈ On → Ord 𝑢)
146144, 145syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → Ord 𝑢)
147 ordsssuc 5729 . . . . . . . . . . . . 13 (((𝑂𝑋) ∈ On ∧ Ord 𝑢) → ((𝑂𝑋) ⊆ 𝑢 ↔ (𝑂𝑋) ∈ suc 𝑢))
148137, 146, 147syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) ⊆ 𝑢 ↔ (𝑂𝑋) ∈ suc 𝑢))
149 ordtr 5654 . . . . . . . . . . . . . . . . 17 (Ord dom 𝑂 → Tr dom 𝑂)
15043, 149mp1i 13 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → Tr dom 𝑂)
151 simprl 790 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂)
152 trsuc 5727 . . . . . . . . . . . . . . . 16 ((Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂)
153150, 151, 152syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂)
154 simprr 792 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ⊆ 𝑢)
155153, 154jca 553 . . . . . . . . . . . . . 14 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢))
1569adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝐴 ∈ On)
15710adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝐵 ∈ On)
158 oecl 7504 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
159156, 157, 158syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐴𝑜 𝐵) ∈ On)
1608, 156, 157cantnff 8454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
1618, 9, 10cantnfs 8446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
16212, 161mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
163162simpld 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹:𝐵𝐴)
164163ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ 𝐴)
1658, 9, 10, 11, 12, 13, 14, 15oemapvali 8464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
166165simp1d 1066 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋𝐵)
16722, 166ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐺𝑋) ∈ 𝐴)
168 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺𝑋) ∈ 𝐴𝐴 ≠ ∅)
169167, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ≠ ∅)
170 on0eln0 5697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
1719, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∅ ∈ 𝐴𝐴 ≠ ∅))
172169, 171mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∅ ∈ 𝐴)
173172adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥𝐵) → ∅ ∈ 𝐴)
174164, 173ifcld 4081 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐵) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ 𝐴)
175 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))
176174, 175fmptd 6292 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)):𝐵𝐴)
177 mptexg 6389 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ On → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ V)
17810, 177syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ V)
179 funmpt 5840 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))
180179a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → Fun (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))
181162simprd 478 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 finSupp ∅)
182 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 supp ∅) = (𝐹 supp ∅)
183 eqimss2 3621 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹 supp ∅) = (𝐹 supp ∅) → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
184182, 183mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
185 0ex 4718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∅ ∈ V
186185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∅ ∈ V)
187163, 184, 10, 186suppssr 7213 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑥) = ∅)
188187ifeq1d 4054 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂𝑢), ∅, ∅))
189 ifid 4075 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑥 ⊆ (𝑂𝑢), ∅, ∅) = ∅
190188, 189syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = ∅)
191190, 10suppss2 7216 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅))
192 fsuppsssupp 8174 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ V ∧ Fun (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∧ (𝐹 finSupp ∅ ∧ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅))) → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) finSupp ∅)
193178, 180, 181, 191, 192syl22anc 1319 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) finSupp ∅)
1948, 9, 10cantnfs 8446 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ 𝑆 ↔ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)):𝐵𝐴 ∧ (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) finSupp ∅)))
195176, 193, 194mpbir2and 959 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ 𝑆)
196195adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) ∈ 𝑆)
197160, 196ffvelrnd 6268 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐴𝑜 𝐵))
198 onelon 5665 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑜 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐴𝑜 𝐵)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ On)
199159, 197, 198syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ On)
20038adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → dom 𝑂 ∈ ω)
201 elnn 6967 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → suc 𝑢 ∈ ω)
202151, 200, 201syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ ω)
203120cantnfvalf 8445 . . . . . . . . . . . . . . . . . . 19 𝐻:ω⟶On
204203ffvelrni 6266 . . . . . . . . . . . . . . . . . 18 (suc 𝑢 ∈ ω → (𝐻‘suc 𝑢) ∈ On)
205202, 204syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐻‘suc 𝑢) ∈ On)
20625adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵)
2072oif 8318 . . . . . . . . . . . . . . . . . . . . . . 23 𝑂:dom 𝑂⟶(𝐺 supp ∅)
208207ffvelrni 6266 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑢 ∈ dom 𝑂 → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅))
209151, 208syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅))
210206, 209sseldd 3569 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ 𝐵)
211 onelon 5665 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ (𝑂‘suc 𝑢) ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On)
212157, 210, 211syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ On)
213 oecl 7504 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝐴𝑜 (𝑂‘suc 𝑢)) ∈ On)
214156, 212, 213syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐴𝑜 (𝑂‘suc 𝑢)) ∈ On)
215163adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝐹:𝐵𝐴)
216215, 210ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴)
217 onelon 5665 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On)
218156, 216, 217syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On)
219 omcl 7503 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑜 (𝑂‘suc 𝑢)) ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ On) → ((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On)
220214, 218, 219syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On)
221 oaord 7514 . . . . . . . . . . . . . . . . 17 ((((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ On ∧ (𝐻‘suc 𝑢) ∈ On ∧ ((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))) ∈ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))))
222199, 205, 220, 221syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))) ∈ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))))
223 ifeq1 4040 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅))
224 ifid 4075 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅) = ∅
225223, 224syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅) = ∅)
226 ifeq1 4040 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), ∅, ∅))
227 ifid 4075 . . . . . . . . . . . . . . . . . . . . . . 23 if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), ∅, ∅) = ∅
228226, 227syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅) = ∅)
229225, 228eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑥) = ∅ → (if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅) ↔ ∅ = ∅))
230 onss 6882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ On → 𝐵 ⊆ On)
23110, 230syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ⊆ On)
232231sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
233232adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → 𝑥 ∈ On)
234212adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (𝑂‘suc 𝑢) ∈ On)
235 onsseleq 5682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢))))
236233, 234, 235syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢))))
237236adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢))))
238233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → 𝑥 ∈ On)
239207ffvelrni 6266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑢 ∈ dom 𝑂 → (𝑂𝑢) ∈ (𝐺 supp ∅))
240153, 239syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ (𝐺 supp ∅))
241206, 240sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ 𝐵)
242 onelon 5665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ∈ On ∧ (𝑂𝑢) ∈ 𝐵) → (𝑂𝑢) ∈ On)
243157, 241, 242syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ On)
244243ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑂𝑢) ∈ On)
245 onsssuc 5730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ (𝑂𝑢) ∈ On) → (𝑥 ⊆ (𝑂𝑢) ↔ 𝑥 ∈ suc (𝑂𝑢)))
246238, 244, 245syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂𝑢) ↔ 𝑥 ∈ suc (𝑂𝑢)))
247 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑢 ∈ V
248247sucid 5721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑢 ∈ suc 𝑢
24953adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
250 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → (𝑢 E suc 𝑢 ↔ (𝑂𝑢) E (𝑂‘suc 𝑢)))
251249, 153, 151, 250syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 E suc 𝑢 ↔ (𝑂𝑢) E (𝑂‘suc 𝑢)))
252247sucex 6903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 suc 𝑢 ∈ V
253252epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑢 E suc 𝑢𝑢 ∈ suc 𝑢)
254 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑂‘suc 𝑢) ∈ V
255254epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑂𝑢) E (𝑂‘suc 𝑢) ↔ (𝑂𝑢) ∈ (𝑂‘suc 𝑢))
256251, 253, 2553bitr3g 301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ suc 𝑢 ↔ (𝑂𝑢) ∈ (𝑂‘suc 𝑢)))
257248, 256mpbii 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ (𝑂‘suc 𝑢))
258 eloni 5650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑂‘suc 𝑢) ∈ On → Ord (𝑂‘suc 𝑢))
259212, 258syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → Ord (𝑂‘suc 𝑢))
260 ordelsuc 6912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑂𝑢) ∈ On ∧ Ord (𝑂‘suc 𝑢)) → ((𝑂𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂𝑢) ⊆ (𝑂‘suc 𝑢)))
261243, 259, 260syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂𝑢) ⊆ (𝑂‘suc 𝑢)))
262257, 261mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc (𝑂𝑢) ⊆ (𝑂‘suc 𝑢))
263262ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → suc (𝑂𝑢) ⊆ (𝑂‘suc 𝑢))
264263sseld 3567 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ∈ suc (𝑂𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢)))
265246, 264sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢)))
266 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ 𝑥)
267249ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
268267, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
2698, 9, 10, 11, 12, 13, 14, 15, 2cantnflem1c 8467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅))
270 f1ocnvfv2 6433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑥)) = 𝑥)
271268, 269, 270syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂‘(𝑂𝑥)) = 𝑥)
272266, 271eleqtrrd 2691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑢) ∈ (𝑂‘(𝑂𝑥)))
273153ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑢 ∈ dom 𝑂)
274268, 56, 573syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑂:(𝐺 supp ∅)⟶dom 𝑂)
275274, 269ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑥) ∈ dom 𝑂)
276 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑥) ∈ dom 𝑂)) → (𝑢 E (𝑂𝑥) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑥))))
277267, 273, 275, 276syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑢 E (𝑂𝑥) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑥))))
278 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑂𝑥) ∈ V
279278epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢 E (𝑂𝑥) ↔ 𝑢 ∈ (𝑂𝑥))
280 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑂‘(𝑂𝑥)) ∈ V
281280epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑂𝑢) E (𝑂‘(𝑂𝑥)) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑥)))
282277, 279, 2813bitr3g 301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑢 ∈ (𝑂𝑥) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑥))))
283272, 282mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → 𝑢 ∈ (𝑂𝑥))
284 ordelon 5664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((Ord dom 𝑂 ∧ (𝑂𝑥) ∈ dom 𝑂) → (𝑂𝑥) ∈ On)
28543, 275, 284sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑂𝑥) ∈ On)
286 eloni 5650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑂𝑥) ∈ On → Ord (𝑂𝑥))
287285, 286syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → Ord (𝑂𝑥))
288 ordelsuc 6912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑢 ∈ (𝑂𝑥) ∧ Ord (𝑂𝑥)) → (𝑢 ∈ (𝑂𝑥) ↔ suc 𝑢 ⊆ (𝑂𝑥)))
289283, 287, 288syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (𝑢 ∈ (𝑂𝑥) ↔ suc 𝑢 ⊆ (𝑂𝑥)))
290283, 289mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → suc 𝑢 ⊆ (𝑂𝑥))
291151ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → suc 𝑢 ∈ dom 𝑂)
29243, 291, 139sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → suc 𝑢 ∈ On)
293 ontri1 5674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((suc 𝑢 ∈ On ∧ (𝑂𝑥) ∈ On) → (suc 𝑢 ⊆ (𝑂𝑥) ↔ ¬ (𝑂𝑥) ∈ suc 𝑢))
294292, 285, 293syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → (suc 𝑢 ⊆ (𝑂𝑥) ↔ ¬ (𝑂𝑥) ∈ suc 𝑢))
295290, 294mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ¬ (𝑂𝑥) ∈ suc 𝑢)
296 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((𝑂𝑥) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((𝑂𝑥) E suc 𝑢 ↔ (𝑂‘(𝑂𝑥)) E (𝑂‘suc 𝑢)))
297267, 275, 291, 296syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑂𝑥) E suc 𝑢 ↔ (𝑂‘(𝑂𝑥)) E (𝑂‘suc 𝑢)))
298252epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑂𝑥) E suc 𝑢 ↔ (𝑂𝑥) ∈ suc 𝑢)
299254epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑂‘(𝑂𝑥)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(𝑂𝑥)) ∈ (𝑂‘suc 𝑢))
300297, 298, 2993bitr3g 301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑂𝑥) ∈ suc 𝑢 ↔ (𝑂‘(𝑂𝑥)) ∈ (𝑂‘suc 𝑢)))
301271eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑂‘(𝑂𝑥)) ∈ (𝑂‘suc 𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢)))
302300, 301bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ((𝑂𝑥) ∈ suc 𝑢𝑥 ∈ (𝑂‘suc 𝑢)))
303295, 302mtbid 313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ ((𝐹𝑥) ≠ ∅ ∧ (𝑂𝑢) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝑂‘suc 𝑢))
304303expr 641 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → ((𝑂𝑢) ∈ 𝑥 → ¬ 𝑥 ∈ (𝑂‘suc 𝑢)))
305304con2d 128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → ¬ (𝑂𝑢) ∈ 𝑥))
306 ontri1 5674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ (𝑂𝑢) ∈ On) → (𝑥 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑥))
307238, 244, 306syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑥))
308305, 307sylibrd 248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → 𝑥 ⊆ (𝑂𝑢)))
309265, 308impbid 201 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢)))
310309orbi1d 735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → ((𝑥 ⊆ (𝑂𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢))))
311237, 310bitr4d 270 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ⊆ (𝑂𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢))))
312 orcom 401 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ⊆ (𝑂𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)))
313311, 312syl6bb 275 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢))))
314313ifbid 4058 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) ∧ (𝐹𝑥) ≠ ∅) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅))
315 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → ∅ = ∅)
316229, 314, 315pm2.61ne 2867 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅))
317316mpteq2dva 4672 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅)))
318317fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅))))
319 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹𝑥) ∈ V
320319, 185ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V
321320a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V)
322321ralrimivw 2950 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ∀𝑥𝐵 if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V)
323175fnmpt 5933 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑥𝐵 if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) Fn 𝐵)
324322, 323syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) Fn 𝐵)
325185a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ∅ ∈ V)
326 suppvalfn 7189 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) = {𝑦𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) ≠ ∅})
327 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦𝐵
328 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐵
329 nffvmpt1 6111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)
330 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
331329, 330nfne 2882 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) ≠ ∅
332 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅
333 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) = ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥))
334333neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → (((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) ≠ ∅ ↔ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅))
335327, 328, 331, 332, 334cbvrab 3171 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑦𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) ≠ ∅} = {𝑥𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅}
336326, 335syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) = {𝑥𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅})
337324, 157, 325, 336syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) = {𝑥𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅})
338 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))
339320a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V)
340338, 339fvmpt2d 6202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) = if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))
341340neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅))
342339biantrurd 528 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ ↔ (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅)))
343 dif1o 7467 . . . . . . . . . . . . . . . . . . . . . . . . 25 (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜) ↔ (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅))
344342, 343syl6bbr 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)))
345341, 344bitrd 267 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)))
346345rabbidva 3163 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → {𝑥𝐵 ∣ ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑥) ≠ ∅} = {𝑥𝐵 ∣ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)})
347337, 346eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) = {𝑥𝐵 ∣ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)})
348320, 343mpbiran 955 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜) ↔ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅)
349 ifeq1 4040 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝑥) = ∅ → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂𝑢), ∅, ∅))
350349, 189syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑥) = ∅ → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = ∅)
351350necon3i 2814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ → (𝐹𝑥) ≠ ∅)
352 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 ⊆ (𝑂𝑢) → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = ∅)
353352necon1ai 2809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ → 𝑥 ⊆ (𝑂𝑢))
354351, 353jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ → ((𝐹𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂𝑢)))
355265expimpd 627 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (((𝐹𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂𝑢)) → 𝑥 ∈ (𝑂‘suc 𝑢)))
356354, 355syl5 33 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ≠ ∅ → 𝑥 ∈ (𝑂‘suc 𝑢)))
357348, 356syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵) → (if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜) → 𝑥 ∈ (𝑂‘suc 𝑢)))
3583573impia 1253 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) ∧ 𝑥𝐵 ∧ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)) → 𝑥 ∈ (𝑂‘suc 𝑢))
359358rabssdv 3645 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → {𝑥𝐵 ∣ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) ∈ (V ∖ 1𝑜)} ⊆ (𝑂‘suc 𝑢))
360347, 359eqsstrd 3602 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)) supp ∅) ⊆ (𝑂‘suc 𝑢))
361 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 = (𝑂‘suc 𝑢) ↔ 𝑦 = (𝑂‘suc 𝑢)))
362 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 ⊆ (𝑂𝑢) ↔ 𝑦 ⊆ (𝑂𝑢)))
363361, 362orbi12d 742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)) ↔ (𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢))))
364 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
365363, 364ifbieq1d 4059 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅))
366365cbvmptv 4678 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅)) = (𝑦𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅))
367 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑂‘suc 𝑢) → (𝐹𝑦) = (𝐹‘(𝑂‘suc 𝑢)))
368367adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐵𝑦 = (𝑂‘suc 𝑢)) → (𝐹𝑦) = (𝐹‘(𝑂‘suc 𝑢)))
369368ifeq1da 4066 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹𝑦), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)))
370362, 364ifbieq1d 4059 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅) = if(𝑦 ⊆ (𝑂𝑢), (𝐹𝑦), ∅))
371 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹𝑦) ∈ V
372371, 185ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 if(𝑦 ⊆ (𝑂𝑢), (𝐹𝑦), ∅) ∈ V
373370, 175, 372fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵 → ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦) = if(𝑦 ⊆ (𝑂𝑢), (𝐹𝑦), ∅))
374373ifeq2d 4055 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹𝑦), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹𝑦), if(𝑦 ⊆ (𝑂𝑢), (𝐹𝑦), ∅)))
375 ifor 4085 . . . . . . . . . . . . . . . . . . . . . . . 24 if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹𝑦), if(𝑦 ⊆ (𝑂𝑢), (𝐹𝑦), ∅))
376374, 375syl6eqr 2662 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹𝑦), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅))
377369, 376eqtr3d 2646 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅))
378377mpteq2ia 4668 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦))) = (𝑦𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂𝑢)), (𝐹𝑦), ∅))
379366, 378eqtr4i 2635 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅)) = (𝑦𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))‘𝑦)))
3808, 156, 157, 196, 210, 216, 360, 379cantnfp1 8461 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅))) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))))))
381380simprd 478 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂𝑢)), (𝐹𝑥), ∅))) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))))
382318, 381eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))))
3838, 9, 10, 2, 13, 120cantnfsuc 8450 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑢 ∈ ω) → (𝐻‘suc suc 𝑢) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))
384202, 383syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))
385165simp3d 1068 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
386385adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
387115adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘(𝑂𝑋)) = 𝑋)
388136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ On)
389144adantrr 749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ On)
390 onsssuc 5730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑂𝑋) ∈ On ∧ 𝑢 ∈ On) → ((𝑂𝑋) ⊆ 𝑢 ↔ (𝑂𝑋) ∈ suc 𝑢))
391388, 389, 390syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) ⊆ 𝑢 ↔ (𝑂𝑋) ∈ suc 𝑢))
392154, 391mpbid 221 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ suc 𝑢)
39359adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ dom 𝑂)
394 isorel 6476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((𝑂𝑋) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((𝑂𝑋) E suc 𝑢 ↔ (𝑂‘(𝑂𝑋)) E (𝑂‘suc 𝑢)))
395249, 393, 151, 394syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) E suc 𝑢 ↔ (𝑂‘(𝑂𝑋)) E (𝑂‘suc 𝑢)))
396252epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑂𝑋) E suc 𝑢 ↔ (𝑂𝑋) ∈ suc 𝑢)
397254epelc 4951 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑂‘(𝑂𝑋)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(𝑂𝑋)) ∈ (𝑂‘suc 𝑢))
398395, 396, 3973bitr3g 301 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) ∈ suc 𝑢 ↔ (𝑂‘(𝑂𝑋)) ∈ (𝑂‘suc 𝑢)))
399392, 398mpbid 221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘(𝑂𝑋)) ∈ (𝑂‘suc 𝑢))
400387, 399eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ∈ (𝑂‘suc 𝑢))
401 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑂‘suc 𝑢) → (𝑋𝑤𝑋 ∈ (𝑂‘suc 𝑢)))
402 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑂‘suc 𝑢) → (𝐹𝑤) = (𝐹‘(𝑂‘suc 𝑢)))
403 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑂‘suc 𝑢) → (𝐺𝑤) = (𝐺‘(𝑂‘suc 𝑢)))
404402, 403eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑂‘suc 𝑢) → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))
405401, 404imbi12d 333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝑂‘suc 𝑢) → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))))
406405rspcv 3278 . . . . . . . . . . . . . . . . . . . . 21 ((𝑂‘suc 𝑢) ∈ 𝐵 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) → (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))))
407210, 386, 400, 406syl3c 64 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))
408407oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) = ((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))))
409408oveq1d 6564 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐺‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))
410384, 409eqtr4d 2647 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢)))
411382, 410eleq12d 2682 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢) ↔ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅)))) ∈ (((𝐴𝑜 (𝑂‘suc 𝑢)) ·𝑜 (𝐹‘(𝑂‘suc 𝑢))) +𝑜 (𝐻‘suc 𝑢))))
412222, 411bitr4d 270 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
413412biimpd 218 . . . . . . . . . . . . . 14 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
414155, 413embantd 57 . . . . . . . . . . . . 13 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
415414expr 641 . . . . . . . . . . . 12 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) ⊆ 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
416148, 415sylbird 249 . . . . . . . . . . 11 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) ∈ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
417 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑋) = suc 𝑢 → (𝑂‘(𝑂𝑋)) = (𝑂‘suc 𝑢))
418417sseq2d 3596 . . . . . . . . . . . . . . . . . 18 ((𝑂𝑋) = suc 𝑢 → (𝑥 ⊆ (𝑂‘(𝑂𝑋)) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢)))
419418ifbid 4058 . . . . . . . . . . . . . . . . 17 ((𝑂𝑋) = suc 𝑢 → if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))
420419mpteq2dv 4673 . . . . . . . . . . . . . . . 16 ((𝑂𝑋) = suc 𝑢 → (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅)))
421420fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑂𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))))
422 suceq 5707 . . . . . . . . . . . . . . . 16 ((𝑂𝑋) = suc 𝑢 → suc (𝑂𝑋) = suc suc 𝑢)
423422fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑂𝑋) = suc 𝑢 → (𝐻‘suc (𝑂𝑋)) = (𝐻‘suc suc 𝑢))
424421, 423eleq12d 2682 . . . . . . . . . . . . . 14 ((𝑂𝑋) = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘(𝑂𝑋)), (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
425122, 424syl5ibcom 234 . . . . . . . . . . . . 13 (𝜑 → ((𝑂𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
426425adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))
427426a1dd 48 . . . . . . . . . . 11 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) = suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
428416, 427jaod 394 . . . . . . . . . 10 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (((𝑂𝑋) ∈ suc 𝑢 ∨ (𝑂𝑋) = suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
429142, 428sylbid 229 . . . . . . . . 9 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((𝑂𝑋) ⊆ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
430429expimpd 627 . . . . . . . 8 (𝜑 → ((suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
431430com23 84 . . . . . . 7 (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))
432431a1i 11 . . . . . 6 (𝑢 ∈ ω → (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))))
43389, 101, 113, 134, 432finds2 6986 . . . . 5 (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂𝑦), (𝐹𝑥), ∅))) ∈ (𝐻‘suc 𝑦))))
43477, 433vtoclga 3245 . . . 4 ( dom 𝑂 ∈ ω → (𝜑 → (( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ dom 𝑂) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂))))
43564, 434mpcom 37 . . 3 (𝜑 → (( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ dom 𝑂) → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂)))
43651, 61, 435mp2and 711 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))) ∈ (𝐻‘suc dom 𝑂))
437163feqmptd 6159 . . . 4 (𝜑𝐹 = (𝑥𝐵 ↦ (𝐹𝑥)))
438 eqeq2 2621 . . . . . 6 ((𝐹𝑥) = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅) → ((𝐹𝑥) = (𝐹𝑥) ↔ (𝐹𝑥) = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅)))
439 eqeq2 2621 . . . . . 6 (∅ = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅) → ((𝐹𝑥) = ∅ ↔ (𝐹𝑥) = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅)))
440 eqidd 2611 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑥 ⊆ (𝑂 dom 𝑂)) → (𝐹𝑥) = (𝐹𝑥))
441207ffvelrni 6266 . . . . . . . . . . . . . 14 ( dom 𝑂 ∈ dom 𝑂 → (𝑂 dom 𝑂) ∈ (𝐺 supp ∅))
44251, 441syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑂 dom 𝑂) ∈ (𝐺 supp ∅))
44325, 442sseldd 3569 . . . . . . . . . . . 12 (𝜑 → (𝑂 dom 𝑂) ∈ 𝐵)
444 onelon 5665 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑂 dom 𝑂) ∈ 𝐵) → (𝑂 dom 𝑂) ∈ On)
44510, 443, 444syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑂 dom 𝑂) ∈ On)
446445adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑂 dom 𝑂) ∈ On)
447 ontri1 5674 . . . . . . . . . 10 ((𝑥 ∈ On ∧ (𝑂 dom 𝑂) ∈ On) → (𝑥 ⊆ (𝑂 dom 𝑂) ↔ ¬ (𝑂 dom 𝑂) ∈ 𝑥))
448232, 446, 447syl2anc 691 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 ⊆ (𝑂 dom 𝑂) ↔ ¬ (𝑂 dom 𝑂) ∈ 𝑥))
449448con2bid 343 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝑂 dom 𝑂) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ (𝑂 dom 𝑂)))
450 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑥𝐵)
451385adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
452 eloni 5650 . . . . . . . . . . . . . . . . . 18 ((𝑂𝑋) ∈ On → Ord (𝑂𝑋))
453136, 452syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → Ord (𝑂𝑋))
454 orduni 6886 . . . . . . . . . . . . . . . . . 18 (Ord dom 𝑂 → Ord dom 𝑂)
45543, 454ax-mp 5 . . . . . . . . . . . . . . . . 17 Ord dom 𝑂
456 ordtri1 5673 . . . . . . . . . . . . . . . . 17 ((Ord (𝑂𝑋) ∧ Ord dom 𝑂) → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
457453, 455, 456sylancl 693 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
45861, 457mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → ¬ dom 𝑂 ∈ (𝑂𝑋))
459 isorel 6476 . . . . . . . . . . . . . . . . . 18 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
46053, 51, 59, 459syl12anc 1316 . . . . . . . . . . . . . . . . 17 (𝜑 → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
461 fvex 6113 . . . . . . . . . . . . . . . . . 18 (𝑂𝑋) ∈ V
462461epelc 4951 . . . . . . . . . . . . . . . . 17 ( dom 𝑂 E (𝑂𝑋) ↔ dom 𝑂 ∈ (𝑂𝑋))
463 fvex 6113 . . . . . . . . . . . . . . . . . 18 (𝑂‘(𝑂𝑋)) ∈ V
464463epelc 4951 . . . . . . . . . . . . . . . . 17 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)))
465460, 462, 4643bitr3g 301 . . . . . . . . . . . . . . . 16 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋))))
466115eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
467465, 466bitrd 267 . . . . . . . . . . . . . . 15 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
468458, 467mtbid 313 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑂 dom 𝑂) ∈ 𝑋)
469 onelon 5665 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
47010, 166, 469syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ On)
471 ontri1 5674 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑂 dom 𝑂) ∈ On) → (𝑋 ⊆ (𝑂 dom 𝑂) ↔ ¬ (𝑂 dom 𝑂) ∈ 𝑋))
472470, 445, 471syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ⊆ (𝑂 dom 𝑂) ↔ ¬ (𝑂 dom 𝑂) ∈ 𝑋))
473468, 472mpbird 246 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (𝑂 dom 𝑂))
474473adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑋 ⊆ (𝑂 dom 𝑂))
475 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → (𝑂 dom 𝑂) ∈ 𝑥)
476470adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑋 ∈ On)
477232adantrr 749 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑥 ∈ On)
478 ontr2 5689 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂 dom 𝑂) ∧ (𝑂 dom 𝑂) ∈ 𝑥) → 𝑋𝑥))
479476, 477, 478syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂 dom 𝑂) ∧ (𝑂 dom 𝑂) ∈ 𝑥) → 𝑋𝑥))
480474, 475, 479mp2and 711 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑋𝑥)
481 eleq2 2677 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝑋𝑤𝑋𝑥))
482 fveq2 6103 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
483 fveq2 6103 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
484482, 483eqeq12d 2625 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑥) = (𝐺𝑥)))
485481, 484imbi12d 333 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
486485rspcv 3278 . . . . . . . . . . 11 (𝑥𝐵 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) → (𝑋𝑥 → (𝐹𝑥) = (𝐺𝑥))))
487450, 451, 480, 486syl3c 64 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → (𝐹𝑥) = (𝐺𝑥))
488475adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂 dom 𝑂) ∈ 𝑥)
48953ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
49051ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → dom 𝑂 ∈ dom 𝑂)
49158ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂:(𝐺 supp ∅)⟶dom 𝑂)
492 ffvelrn 6265 . . . . . . . . . . . . . . . . . 18 ((𝑂:(𝐺 supp ∅)⟶dom 𝑂𝑥 ∈ (𝐺 supp ∅)) → (𝑂𝑥) ∈ dom 𝑂)
493491, 492sylancom 698 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂𝑥) ∈ dom 𝑂)
494 isorel 6476 . . . . . . . . . . . . . . . . 17 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑥) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑥) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑥))))
495489, 490, 493, 494syl12anc 1316 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ( dom 𝑂 E (𝑂𝑥) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑥))))
496278epelc 4951 . . . . . . . . . . . . . . . 16 ( dom 𝑂 E (𝑂𝑥) ↔ dom 𝑂 ∈ (𝑂𝑥))
497280epelc 4951 . . . . . . . . . . . . . . . 16 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑥)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑥)))
498495, 496, 4973bitr3g 301 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ( dom 𝑂 ∈ (𝑂𝑥) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑥))))
49955ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
500499, 270sylancom 698 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑥)) = 𝑥)
501500eleq2d 2673 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑥)) ↔ (𝑂 dom 𝑂) ∈ 𝑥))
502498, 501bitrd 267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ( dom 𝑂 ∈ (𝑂𝑥) ↔ (𝑂 dom 𝑂) ∈ 𝑥))
503488, 502mpbird 246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → dom 𝑂 ∈ (𝑂𝑥))
504 elssuni 4403 . . . . . . . . . . . . . . 15 ((𝑂𝑥) ∈ dom 𝑂 → (𝑂𝑥) ⊆ dom 𝑂)
505493, 504syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂𝑥) ⊆ dom 𝑂)
50643, 493, 284sylancr 694 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂𝑥) ∈ On)
507506, 286syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → Ord (𝑂𝑥))
508 ordtri1 5673 . . . . . . . . . . . . . . 15 ((Ord (𝑂𝑥) ∧ Ord dom 𝑂) → ((𝑂𝑥) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑥)))
509507, 455, 508sylancl 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝑂𝑥) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑥)))
510505, 509mpbid 221 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ¬ dom 𝑂 ∈ (𝑂𝑥))
511503, 510pm2.65da 598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝐺 supp ∅))
512450, 511eldifd 3551 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅)))
513 ssid 3587 . . . . . . . . . . . . 13 (𝐺 supp ∅) ⊆ (𝐺 supp ∅)
514513a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
51522, 514, 10, 186suppssr 7213 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑥) = ∅)
516512, 515syldan 486 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → (𝐺𝑥) = ∅)
517487, 516eqtrd 2644 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑂 dom 𝑂) ∈ 𝑥)) → (𝐹𝑥) = ∅)
518517expr 641 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝑂 dom 𝑂) ∈ 𝑥 → (𝐹𝑥) = ∅))
519449, 518sylbird 249 . . . . . . 7 ((𝜑𝑥𝐵) → (¬ 𝑥 ⊆ (𝑂 dom 𝑂) → (𝐹𝑥) = ∅))
520519imp 444 . . . . . 6 (((𝜑𝑥𝐵) ∧ ¬ 𝑥 ⊆ (𝑂 dom 𝑂)) → (𝐹𝑥) = ∅)
521438, 439, 440, 520ifbothda 4073 . . . . 5 ((𝜑𝑥𝐵) → (𝐹𝑥) = if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))
522521mpteq2dva 4672 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐹𝑥)) = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅)))
523437, 522eqtrd 2644 . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅)))
524523fveq2d 6107 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥 ⊆ (𝑂 dom 𝑂), (𝐹𝑥), ∅))))
5258, 9, 10, 2, 13, 120cantnfval 8448 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘dom 𝑂))
52650fveq2d 6107 . . 3 (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc dom 𝑂))
527525, 526eqtrd 2644 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘suc dom 𝑂))
528436, 524, 5273eltr4d 2703 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036   cuni 4372   class class class wbr 4583  {copab 4642  cmpt 4643  Tr wtr 4680   E cep 4947   We wwe 4996  ccnv 5037  dom cdm 5038  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cmpt2 6551  ωcom 6957   supp csupp 7182  seq𝜔cseqom 7429  1𝑜c1o 7440   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446  cen 7838   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  cantnf  8473
  Copyright terms: Public domain W3C validator