MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss2 Structured version   Visualization version   GIF version

Theorem suppss2 7216
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppss2.n ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
suppss2.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppss2 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppss2
StepHypRef Expression
1 eqid 2610 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2 suppss2.a . . . . . 6 (𝜑𝐴𝑉)
32adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐴𝑉)
4 simpl 472 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
51, 3, 4mptsuppdifd 7204 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑘𝐴𝐵) supp 𝑍) = {𝑘𝐴𝐵 ∈ (V ∖ {𝑍})})
6 eldifsni 4261 . . . . . . 7 (𝐵 ∈ (V ∖ {𝑍}) → 𝐵𝑍)
7 eldif 3550 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
8 suppss2.n . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
98adantll 746 . . . . . . . . . 10 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
107, 9sylan2br 492 . . . . . . . . 9 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → 𝐵 = 𝑍)
1110expr 641 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊𝐵 = 𝑍))
1211necon1ad 2799 . . . . . . 7 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (𝐵𝑍𝑘𝑊))
136, 12syl5 33 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘𝑊))
14133impia 1253 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴𝐵 ∈ (V ∖ {𝑍})) → 𝑘𝑊)
1514rabssdv 3645 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {𝑘𝐴𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊)
165, 15eqsstrd 3602 . . 3 ((𝑍 ∈ V ∧ 𝜑) → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
1716ex 449 . 2 (𝑍 ∈ V → (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊))
18 id 22 . . . . . 6 𝑍 ∈ V → ¬ 𝑍 ∈ V)
1918intnand 953 . . . . 5 𝑍 ∈ V → ¬ ((𝑘𝐴𝐵) ∈ V ∧ 𝑍 ∈ V))
20 supp0prc 7185 . . . . 5 (¬ ((𝑘𝐴𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘𝐴𝐵) supp 𝑍) = ∅)
2119, 20syl 17 . . . 4 𝑍 ∈ V → ((𝑘𝐴𝐵) supp 𝑍) = ∅)
22 0ss 3924 . . . 4 ∅ ⊆ 𝑊
2321, 22syl6eqss 3618 . . 3 𝑍 ∈ V → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
2423a1d 25 . 2 𝑍 ∈ V → (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊))
2517, 24pm2.61i 175 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125  cmpt 4643  (class class class)co 6549   supp csupp 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-supp 7183
This theorem is referenced by:  suppsssn  7217  fsuppmptif  8188  sniffsupp  8198  cantnflem1d  8468  cantnflem1  8469  gsumzsplit  18150  gsummpt1n0  18187  gsum2dlem1  18192  gsum2dlem2  18193  gsum2d  18194  dprdfid  18239  dprdfinv  18241  dprdfadd  18242  dmdprdsplitlem  18259  dpjidcl  18280  psrbagaddcl  19191  psrlidm  19224  psrridm  19225  mplsubrg  19261  mplmon  19284  mplmonmul  19285  mplcoe1  19286  mplcoe5  19289  mplbas2  19291  evlslem4  19329  evlslem2  19333  evlslem3  19335  evlslem1  19336  coe1tmmul2  19467  coe1tmmul  19468  uvcff  19949  uvcresum  19951  tsmssplit  21765  coe1mul3  23663  plypf1  23772  tayl0  23920  suppss2f  28819  suppss3  28890
  Copyright terms: Public domain W3C validator