MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 8470
Description: Lemma for cantnf 8473. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 7504 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
41, 2, 3syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
6 onelon 5665 . . . . . . . . 9 (((𝐴𝑜 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴𝑜 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 691 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 7468 . . . . . . . 8 (𝐶 ∈ (On ∖ 1𝑜) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 695 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1𝑜))
1110eldifbd 3553 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1𝑜)
12 ssel 3562 . . . . . . 7 ((𝐴𝑜 𝐵) ⊆ 1𝑜 → (𝐶 ∈ (𝐴𝑜 𝐵) → 𝐶 ∈ 1𝑜))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴𝑜 𝐵) ⊆ 1𝑜𝐶 ∈ 1𝑜))
1411, 13mtod 188 . . . . 5 (𝜑 → ¬ (𝐴𝑜 𝐵) ⊆ 1𝑜)
15 oe0m 7485 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑𝑜 𝐵) = (1𝑜𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑𝑜 𝐵) = (1𝑜𝐵))
17 difss 3699 . . . . . . . 8 (1𝑜𝐵) ⊆ 1𝑜
1816, 17syl6eqss 3618 . . . . . . 7 (𝜑 → (∅ ↑𝑜 𝐵) ⊆ 1𝑜)
19 oveq1 6556 . . . . . . . 8 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
2019sseq1d 3595 . . . . . . 7 (𝐴 = ∅ → ((𝐴𝑜 𝐵) ⊆ 1𝑜 ↔ (∅ ↑𝑜 𝐵) ⊆ 1𝑜))
2118, 20syl5ibrcom 236 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴𝑜 𝐵) ⊆ 1𝑜))
22 oe1m 7512 . . . . . . . 8 (𝐵 ∈ On → (1𝑜𝑜 𝐵) = 1𝑜)
23 eqimss 3620 . . . . . . . 8 ((1𝑜𝑜 𝐵) = 1𝑜 → (1𝑜𝑜 𝐵) ⊆ 1𝑜)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1𝑜𝑜 𝐵) ⊆ 1𝑜)
25 oveq1 6556 . . . . . . . 8 (𝐴 = 1𝑜 → (𝐴𝑜 𝐵) = (1𝑜𝑜 𝐵))
2625sseq1d 3595 . . . . . . 7 (𝐴 = 1𝑜 → ((𝐴𝑜 𝐵) ⊆ 1𝑜 ↔ (1𝑜𝑜 𝐵) ⊆ 1𝑜))
2724, 26syl5ibrcom 236 . . . . . 6 (𝜑 → (𝐴 = 1𝑜 → (𝐴𝑜 𝐵) ⊆ 1𝑜))
2821, 27jaod 394 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → (𝐴𝑜 𝐵) ⊆ 1𝑜))
2914, 28mtod 188 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
30 elpri 4145 . . . . 5 (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
31 df2o3 7460 . . . . 5 2𝑜 = {∅, 1𝑜}
3230, 31eleq2s 2706 . . . 4 (𝐴 ∈ 2𝑜 → (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
3329, 32nsyl 134 . . 3 (𝜑 → ¬ 𝐴 ∈ 2𝑜)
341, 33eldifd 3551 . 2 (𝜑𝐴 ∈ (On ∖ 2𝑜))
3534, 10jca 553 1 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  wss 3540  c0 3874  {cpr 4127  {copab 4642  dom cdm 5038  ran crn 5039  Oncon0 5640  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441  𝑜 coe 7446   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  cantnflem3  8471  cantnflem4  8472
  Copyright terms: Public domain W3C validator