MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Structured version   Visualization version   GIF version

Theorem unizlim 5761
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2782 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 df-lim 5645 . . . . . . . . 9 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
32biimpri 217 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
433exp 1256 . . . . . . 7 (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
51, 4syl5bir 232 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
65com23 84 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴)))
76imp 444 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴))
87orrd 392 . . 3 ((Ord 𝐴𝐴 = 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴))
98ex 449 . 2 (Ord 𝐴 → (𝐴 = 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴)))
10 uni0 4401 . . . . 5 ∅ = ∅
1110eqcomi 2619 . . . 4 ∅ =
12 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
13 unieq 4380 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1411, 12, 133eqtr4a 2670 . . 3 (𝐴 = ∅ → 𝐴 = 𝐴)
15 limuni 5702 . . 3 (Lim 𝐴𝐴 = 𝐴)
1614, 15jaoi 393 . 2 ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = 𝐴)
179, 16impbid1 214 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wne 2780  c0 3874   cuni 4372  Ord word 5639  Lim wlim 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-uni 4373  df-lim 5645
This theorem is referenced by:  ordzsl  6937  oeeulem  7568  cantnfp1lem2  8459  cantnflem1  8469  cnfcom2lem  8481  ordcmp  31616
  Copyright terms: Public domain W3C validator