MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom3 Structured version   Visualization version   GIF version

Theorem binom3 12847
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Proof of Theorem binom3
StepHypRef Expression
1 df-3 10957 . . . 4 3 = (2 + 1)
21oveq2i 6560 . . 3 ((𝐴 + 𝐵)↑3) = ((𝐴 + 𝐵)↑(2 + 1))
3 addcl 9897 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 2nn0 11186 . . . 4 2 ∈ ℕ0
5 expp1 12729 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
63, 4, 5sylancl 693 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
72, 6syl5eq 2656 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
8 sqcl 12787 . . . . 5 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵)↑2) ∈ ℂ)
93, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
10 simpl 472 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 simpr 476 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11adddid 9943 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)))
13 binom2 12841 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1413oveq1d 6564 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴))
15 sqcl 12787 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1610, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 2cn 10968 . . . . . . . 8 2 ∈ ℂ
18 mulcl 9899 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
19 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2017, 18, 19sylancr 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2116, 20addcld 9938 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 12787 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2311, 22syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2421, 23, 10adddird 9944 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)))
2516, 20, 10adddird 9944 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
261oveq2i 6560 . . . . . . . . 9 (𝐴↑3) = (𝐴↑(2 + 1))
27 expp1 12729 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2810, 4, 27sylancl 693 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2926, 28syl5eq 2656 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) = ((𝐴↑2) · 𝐴))
30 sqval 12784 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
3110, 30syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
3231oveq1d 6564 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
3310, 10, 11mul32d 10125 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3432, 33eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3534oveq2d 6565 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = (2 · ((𝐴 · 𝐵) · 𝐴)))
36 2cnd 10970 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
3736, 18, 10mulassd 9942 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐴) = (2 · ((𝐴 · 𝐵) · 𝐴)))
3835, 37eqtr4d 2647 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = ((2 · (𝐴 · 𝐵)) · 𝐴))
3929, 38oveq12d 6567 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
4025, 39eqtr4d 2647 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))))
4123, 10mulcomd 9940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐴) = (𝐴 · (𝐵↑2)))
4240, 41oveq12d 6567 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4314, 24, 423eqtrd 2648 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4413oveq1d 6564 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵))
4521, 23, 11adddird 9944 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
46 sqval 12784 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
4711, 46syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
4847oveq2d 6565 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = (𝐴 · (𝐵 · 𝐵)))
4910, 11, 11mulassd 9942 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐵) = (𝐴 · (𝐵 · 𝐵)))
5048, 49eqtr4d 2647 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = ((𝐴 · 𝐵) · 𝐵))
5150oveq2d 6565 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5236, 18, 11mulassd 9942 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐵) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5351, 52eqtr4d 2647 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = ((2 · (𝐴 · 𝐵)) · 𝐵))
5453oveq2d 6565 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5516, 20, 11adddird 9944 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5654, 55eqtr4d 2647 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵))
571oveq2i 6560 . . . . . . . 8 (𝐵↑3) = (𝐵↑(2 + 1))
58 expp1 12729 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
5911, 4, 58sylancl 693 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
6057, 59syl5eq 2656 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) = ((𝐵↑2) · 𝐵))
6156, 60oveq12d 6567 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
6216, 11mulcld 9939 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
6310, 23mulcld 9939 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
64 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
6517, 63, 64sylancr 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
66 3nn0 11187 . . . . . . . 8 3 ∈ ℕ0
67 expcl 12740 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
6811, 66, 67sylancl 693 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
6962, 65, 68addassd 9941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7061, 69eqtr3d 2646 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7144, 45, 703eqtrd 2648 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7243, 71oveq12d 6567 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
73 expcl 12740 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
7410, 66, 73sylancl 693 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
75 mulcl 9899 . . . . . 6 ((2 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7617, 62, 75sylancr 694 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7774, 76addcld 9938 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
7865, 68addcld 9938 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
7977, 63, 62, 78add4d 10143 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8012, 72, 793eqtrd 2648 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8174, 76, 62addassd 9941 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
821oveq1i 6559 . . . . . . 7 (3 · ((𝐴↑2) · 𝐵)) = ((2 + 1) · ((𝐴↑2) · 𝐵))
83 1cnd 9935 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
8436, 83, 62adddird 9944 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 + 1) · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8582, 84syl5eq 2656 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8662mulid2d 9937 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑2) · 𝐵)) = ((𝐴↑2) · 𝐵))
8786oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8885, 87eqtrd 2644 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8988oveq2d 6565 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
9081, 89eqtr4d 2647 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))))
91 1p2e3 11029 . . . . . . . 8 (1 + 2) = 3
9291oveq1i 6559 . . . . . . 7 ((1 + 2) · (𝐴 · (𝐵↑2))) = (3 · (𝐴 · (𝐵↑2)))
9383, 36, 63adddird 9944 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 2) · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9492, 93syl5eqr 2658 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9563mulid2d 9937 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑2))) = (𝐴 · (𝐵↑2)))
9695oveq1d 6564 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9794, 96eqtrd 2644 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9897oveq1d 6564 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) = (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)))
9963, 65, 68addassd 9941 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
10098, 99eqtr2d 2645 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) = ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))
10190, 100oveq12d 6567 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1027, 80, 1013eqtrd 2648 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  2c2 10947  3c3 10948  0cn0 11169  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  dcubic1lem  24370  mcubic  24374  binom4  24377
  Copyright terms: Public domain W3C validator