ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd GIF version

Theorem unssd 3119
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1 (𝜑𝐴𝐶)
unssd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
unssd (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2 (𝜑𝐴𝐶)
2 unssd.2 . 2 (𝜑𝐵𝐶)
3 unss 3117 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
43biimpi 113 . 2 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
51, 2, 4syl2anc 391 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  cun 2915  wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931
This theorem is referenced by:  tpssi  3530  un0addcl  8213  un0mulcl  8214  fzosplit  9031  fzouzsplit  9033  bj-omtrans  10054
  Copyright terms: Public domain W3C validator