ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni GIF version

Theorem ssonuni 4214
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4213 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 uniexg 4175 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 elong 4110 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
42, 3syl 14 . 2 (𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴))
51, 4syl5ibr 145 1 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wcel 1393  Vcvv 2557  wss 2917   cuni 3580  Ord word 4099  Oncon0 4100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105
This theorem is referenced by:  ssonunii  4215  onun2  4216  onuni  4220  iunon  5899
  Copyright terms: Public domain W3C validator