Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ6 | GIF version |
Description: Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.) |
Ref | Expression |
---|---|
sbequ6 | ⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 1610 | . 2 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | 1 | sbf 1660 | 1 ⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 98 ∀wal 1241 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |