ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riin0 GIF version

Theorem riin0 3728
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 3671 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 3138 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 3715 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 3135 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 3253 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2060 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6syl6eq 2088 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  Vcvv 2557  cin 2916  c0 3224   ciin 3658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225  df-iin 3660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator