Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2d GIF version

Theorem ineq2d 3138
 Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ineq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineq2 3132 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∩ cin 2916 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924 This theorem is referenced by:  disjpr2  3434  rint0  3654  riin0  3728  xpriindim  4474  riinint  4593  reseq2  4607  csbresg  4615  isoselem  5459
 Copyright terms: Public domain W3C validator