Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riin0 | Unicode version |
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riin0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 3671 | . . 3 | |
2 | 1 | ineq2d 3138 | . 2 |
3 | 0iin 3715 | . . . 4 | |
4 | 3 | ineq2i 3135 | . . 3 |
5 | inv1 3253 | . . 3 | |
6 | 4, 5 | eqtri 2060 | . 2 |
7 | 2, 6 | syl6eq 2088 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 cvv 2557 cin 2916 c0 3224 ciin 3658 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 df-iin 3660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |