ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 Structured version   GIF version

Theorem onuniss2 4203
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2 (A On → {x On ∣ xA} = A)
Distinct variable group:   x,A

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3605 1 (A On → {x On ∣ xA} = A)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242   wcel 1390  {crab 2304  wss 2911   cuni 3571  Oncon0 4066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rab 2309  df-v 2553  df-in 2918  df-ss 2925  df-uni 3572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator