ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 Structured version   Unicode version

Theorem onuniss2 4187
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2  On  U. {  On  |  C_  }
Distinct variable group:   ,

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3588 1  On  U. {  On  |  C_  }
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1228   wcel 1374   {crab 2288    C_ wss 2894   U.cuni 3554   Oncon0 4049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rab 2293  df-v 2537  df-in 2901  df-ss 2908  df-uni 3555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator