![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nsyl | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
nsyl.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | nsyl.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 1, 2 | nsyl3 556 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
4 | 3 | con2i 557 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 544 ax-in2 545 |
This theorem is referenced by: con3i 562 pm4.52im 803 intnand 840 intnanrd 841 camestres 2005 camestros 2009 calemes 2016 calemos 2019 pssn2lp 3045 unssin 3176 inssun 3177 onsucelsucexmid 4255 funun 4944 pwuninel2 5897 swoer 6134 swoord1 6135 swoord2 6136 elnnz 8255 lbioog 8782 ubioog 8783 fzneuz 8963 fzodisj 9034 |
Copyright terms: Public domain | W3C validator |