ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Structured version   GIF version

Theorem n0r 3210
Description: An inhabited class is nonempty. See n0rf 3209 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r (x x AA ≠ ∅)
Distinct variable group:   x,A

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2161 . 2 xA
21n0rf 3209 1 (x x AA ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1363   wcel 1375  wne 2187  c0 3200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330  df-sb 1629  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-ne 2189  df-v 2536  df-dif 2896  df-nul 3201
This theorem is referenced by:  neq0r  3211  opnzi  3945  elqsn0  6079
  Copyright terms: Public domain W3C validator