ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Structured version   GIF version

Theorem n0r 3209
Description: An inhabited class is nonempty. See n0rf 3208 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r (x x AA ≠ ∅)
Distinct variable group:   x,A

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2160 . 2 xA
21n0rf 3208 1 (x x AA ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1362   wcel 1374  wne 2186  c0 3199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ne 2188  df-v 2535  df-dif 2895  df-nul 3200
This theorem is referenced by:  neq0r  3210  opnzi  3944  elqsn0  6084
  Copyright terms: Public domain W3C validator