Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r GIF version

Theorem n0r 3234
 Description: An inhabited class is nonempty. See n0rf 3233 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2178 . 2 𝑥𝐴
21n0rf 3233 1 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∃wex 1381   ∈ wcel 1393   ≠ wne 2204  ∅c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-v 2559  df-dif 2920  df-nul 3225 This theorem is referenced by:  neq0r  3235  opnzi  3972  elqsn0  6175  fin0  6342
 Copyright terms: Public domain W3C validator