![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opnzi | GIF version |
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 3971). (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | opm 3971 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 849 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
5 | n0r 3234 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
6 | 4, 5 | ax-mp 7 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1381 ∈ wcel 1393 ≠ wne 2204 Vcvv 2557 ∅c0 3224 〈cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: 0nelxp 4372 0neqopab 5550 |
Copyright terms: Public domain | W3C validator |