Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mob2 GIF version

Theorem mob2 2721
 Description: Consequence of "at most one." (Contributed by NM, 2-Jan-2015.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
mob2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mob2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp3 906 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → 𝜑)
2 moi2.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2syl5ibcom 144 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
4 nfs1v 1815 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜑
5 sbequ12 1654 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
64, 5mo4f 1960 . . . . . . 7 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
7 sp 1401 . . . . . . 7 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
86, 7sylbi 114 . . . . . 6 (∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
9 nfv 1421 . . . . . . . . . 10 𝑥𝜓
109, 2sbhypf 2603 . . . . . . . . 9 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
1110anbi2d 437 . . . . . . . 8 (𝑦 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓)))
12 eqeq2 2049 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
1311, 12imbi12d 223 . . . . . . 7 (𝑦 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝐴)))
1413spcgv 2640 . . . . . 6 (𝐴𝐵 → (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑𝜓) → 𝑥 = 𝐴)))
158, 14syl5 28 . . . . 5 (𝐴𝐵 → (∃*𝑥𝜑 → ((𝜑𝜓) → 𝑥 = 𝐴)))
1615imp 115 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → ((𝜑𝜓) → 𝑥 = 𝐴))
1716expd 245 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → (𝜑 → (𝜓𝑥 = 𝐴)))
18173impia 1101 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝜓𝑥 = 𝐴))
193, 18impbid 120 1 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885  ∀wal 1241   = wceq 1243   ∈ wcel 1393  [wsb 1645  ∃*wmo 1901 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559 This theorem is referenced by:  moi2  2722  mob  2723
 Copyright terms: Public domain W3C validator