Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2d GIF version

Theorem iuneq2d 3673
 Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.)
Hypothesis
Ref Expression
iuneq2d.2 (φB = 𝐶)
Assertion
Ref Expression
iuneq2d (φ x A B = x A 𝐶)
Distinct variable groups:   φ,x   x,A
Allowed substitution hints:   B(x)   𝐶(x)

Proof of Theorem iuneq2d
StepHypRef Expression
1 iuneq2d.2 . . 3 (φB = 𝐶)
21adantr 261 . 2 ((φ x A) → B = 𝐶)
32iuneq2dv 3669 1 (φ x A B = x A 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1242   ∈ wcel 1390  ∪ ciun 3648 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-in 2918  df-ss 2925  df-iun 3650 This theorem is referenced by:  rdgeq1  5898
 Copyright terms: Public domain W3C validator