ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq12d GIF version

Theorem iuneq12d 3675
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
Hypotheses
Ref Expression
iuneq1d.1 (φA = B)
iuneq12d.2 (φ𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (φ x A 𝐶 = x B 𝐷)
Distinct variable groups:   x,A   x,B   φ,x
Allowed substitution hints:   𝐶(x)   𝐷(x)

Proof of Theorem iuneq12d
StepHypRef Expression
1 iuneq1d.1 . . 3 (φA = B)
21iuneq1d 3674 . 2 (φ x A 𝐶 = x B 𝐶)
3 iuneq12d.2 . . . 4 (φ𝐶 = 𝐷)
43adantr 261 . . 3 ((φ x B) → 𝐶 = 𝐷)
54iuneq2dv 3672 . 2 (φ x B 𝐶 = x B 𝐷)
62, 5eqtrd 2072 1 (φ x A 𝐶 = x B 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243   wcel 1393   ciun 3651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-in 2921  df-ss 2928  df-iun 3653
This theorem is referenced by:  rdgivallem  5912  rdg0  5918
  Copyright terms: Public domain W3C validator