Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intsn | GIF version |
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intsn | ⊢ ∩ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intsng 3649 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ∩ {𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 Vcvv 2557 {csn 3375 ∩ cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-un 2922 df-in 2924 df-sn 3381 df-pr 3382 df-int 3616 |
This theorem is referenced by: uniintsnr 3651 intunsn 3653 op1stb 4209 op2ndb 4804 |
Copyright terms: Public domain | W3C validator |