Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn GIF version

Theorem intsn 3650
 Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1 𝐴 ∈ V
Assertion
Ref Expression
intsn {𝐴} = 𝐴

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2 𝐴 ∈ V
2 intsng 3649 . 2 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2ax-mp 7 1 {𝐴} = 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∈ wcel 1393  Vcvv 2557  {csn 3375  ∩ cint 3615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-sn 3381  df-pr 3382  df-int 3616 This theorem is referenced by:  uniintsnr  3651  intunsn  3653  op1stb  4209  op2ndb  4804
 Copyright terms: Public domain W3C validator