Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Structured version   GIF version

Theorem intsn 3641
 Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1 A V
Assertion
Ref Expression
intsn {A} = A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2 A V
2 intsng 3640 . 2 (A V → {A} = A)
31, 2ax-mp 7 1 {A} = A
 Colors of variables: wff set class Syntax hints:   = wceq 1242   ∈ wcel 1390  Vcvv 2551  {csn 3367  ∩ cint 3606 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-sn 3373  df-pr 3374  df-int 3607 This theorem is referenced by:  uniintsnr  3642  intunsn  3644  op1stb  4175  op2ndb  4747
 Copyright terms: Public domain W3C validator