ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn GIF version

Theorem intunsn 3653
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3646 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 3650 . . 3 {𝐵} = 𝐵
43ineq2i 3135 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2060 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  Vcvv 2557  cun 2915  cin 2916  {csn 3375   cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-sn 3381  df-pr 3382  df-int 3616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator