Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intminss GIF version

Theorem intminss 3640
 Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
intminss ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2698 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
3 intss1 3630 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → {𝑥𝐵𝜑} ⊆ 𝐴)
42, 3sylbir 125 1 ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393  {crab 2310   ⊆ wss 2917  ∩ cint 3615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931  df-int 3616 This theorem is referenced by:  onintss  4127  cardonle  6367
 Copyright terms: Public domain W3C validator