ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintss GIF version

Theorem onintss 4127
Description: If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypothesis
Ref Expression
onintss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
onintss (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem onintss
StepHypRef Expression
1 onintss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21intminss 3640 . 2 ((𝐴 ∈ On ∧ 𝜓) → {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)
32ex 108 1 (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wcel 1393  {crab 2310  wss 2917   cint 3615  Oncon0 4100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931  df-int 3616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator