Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bd0el Structured version   GIF version

Theorem bj-bd0el 9323
Description: Boundedness of the formula "the empty set belongs to the setvar x". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bd0el BOUNDED x

Proof of Theorem bj-bd0el
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 bdeq0 9322 . 2 BOUNDED y = ∅
21bj-bdcel 9292 1 BOUNDED x
Colors of variables: wff set class
Syntax hints:   wcel 1390  c0 3218  BOUNDED wbd 9267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-bd0 9268  ax-bdim 9269  ax-bdn 9272  ax-bdal 9273  ax-bdex 9274  ax-bdeq 9275
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-dif 2914  df-in 2918  df-ss 2925  df-nul 3219  df-bdc 9296
This theorem is referenced by:  bj-d0clsepcl  9382  bj-bdind  9387
  Copyright terms: Public domain W3C validator