ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif4 Unicode version

Theorem undif4 3284
Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undif4  |-  ( ( A  i^i  C )  =  (/)  ->  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  C
) )

Proof of Theorem undif4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm2.621 666 . . . . . . 7  |-  ( ( x  e.  A  ->  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  -.  x  e.  C
)  ->  -.  x  e.  C ) )
2 olc 632 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( x  e.  A  \/  -.  x  e.  C
) )
31, 2impbid1 130 . . . . . 6  |-  ( ( x  e.  A  ->  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  -.  x  e.  C
)  <->  -.  x  e.  C ) )
43anbi2d 437 . . . . 5  |-  ( ( x  e.  A  ->  -.  x  e.  C
)  ->  ( (
( x  e.  A  \/  x  e.  B
)  /\  ( x  e.  A  \/  -.  x  e.  C )
)  <->  ( ( x  e.  A  \/  x  e.  B )  /\  -.  x  e.  C )
) )
5 eldif 2927 . . . . . . 7  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65orbi2i 679 . . . . . 6  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 ordi 729 . . . . . 6  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( x  e.  A  \/  -.  x  e.  C
) ) )
86, 7bitri 173 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( x  e.  A  \/  -.  x  e.  C
) ) )
9 elun 3084 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
109anbi1i 431 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  C
)  <->  ( ( x  e.  A  \/  x  e.  B )  /\  -.  x  e.  C )
)
114, 8, 103bitr4g 212 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  C ) ) )
12 elun 3084 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
13 eldif 2927 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \  C )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  C ) )
1411, 12, 133bitr4g 212 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  C
)  ->  ( x  e.  ( A  u.  ( B  \  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  C ) ) )
1514alimi 1344 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  C )  ->  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  C ) ) )
16 disj1 3270 . 2  |-  ( ( A  i^i  C )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  C )
)
17 dfcleq 2034 . 2  |-  ( ( A  u.  ( B 
\  C ) )  =  ( ( A  u.  B )  \  C )  <->  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  C ) ) )
1815, 16, 173imtr4i 190 1  |-  ( ( A  i^i  C )  =  (/)  ->  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629   A.wal 1241    = wceq 1243    e. wcel 1393    \ cdif 2914    u. cun 2915    i^i cin 2916   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-nul 3225
This theorem is referenced by:  phplem1  6315
  Copyright terms: Public domain W3C validator