Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjssun | Unicode version |
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjssun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 3184 | . . . . 5 | |
2 | 1 | equncomi 3089 | . . . 4 |
3 | uneq2 3091 | . . . . 5 | |
4 | un0 3251 | . . . . 5 | |
5 | 3, 4 | syl6eq 2088 | . . . 4 |
6 | 2, 5 | syl5eq 2084 | . . 3 |
7 | 6 | eqeq1d 2048 | . 2 |
8 | df-ss 2931 | . 2 | |
9 | df-ss 2931 | . 2 | |
10 | 7, 8, 9 | 3bitr4g 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 cun 2915 cin 2916 wss 2917 c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |