Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf Unicode version

Theorem ssiinf 3706
 Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1
Assertion
Ref Expression
ssiinf

Proof of Theorem ssiinf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . . 5
2 eliin 3662 . . . . 5
31, 2ax-mp 7 . . . 4
43ralbii 2330 . . 3
5 ssiinf.1 . . . 4
6 nfcv 2178 . . . 4
75, 6ralcomf 2471 . . 3
84, 7bitri 173 . 2
9 dfss3 2935 . 2
10 dfss3 2935 . . 3
1110ralbii 2330 . 2
128, 9, 113bitr4i 201 1
 Colors of variables: wff set class Syntax hints:   wb 98   wcel 1393  wnfc 2165  wral 2306  cvv 2557   wss 2917  ciin 3658 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-iin 3660 This theorem is referenced by:  ssiin  3707  dmiin  4580
 Copyright terms: Public domain W3C validator