Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied2 Unicode version

Theorem sbcied2 2800
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1
sbcied2.2
sbcied2.3
Assertion
Ref Expression
sbcied2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2
2 id 19 . . . 4
3 sbcied2.2 . . . 4
42, 3sylan9eqr 2094 . . 3
5 sbcied2.3 . . 3
64, 5syldan 266 . 2
71, 6sbcied 2799 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator