Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq1f Unicode version

Theorem reueq1f 2503
 Description: Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1
raleq1f.2
Assertion
Ref Expression
reueq1f

Proof of Theorem reueq1f
StepHypRef Expression
1 raleq1f.1 . . . 4
2 raleq1f.2 . . . 4
31, 2nfeq 2185 . . 3
4 eleq2 2101 . . . 4
54anbi1d 438 . . 3
63, 5eubid 1907 . 2
7 df-reu 2313 . 2
8 df-reu 2313 . 2
96, 7, 83bitr4g 212 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  weu 1900  wnfc 2165  wreu 2308 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-cleq 2033  df-clel 2036  df-nfc 2167  df-reu 2313 This theorem is referenced by:  reueq1  2507
 Copyright terms: Public domain W3C validator