ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp Unicode version

Theorem poinxp 4409
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)

Proof of Theorem poinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 481 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  x  e.  A )
2 brinxp 4408 . . . . . . . 8  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x R x  <-> 
x ( R  i^i  ( A  X.  A
) ) x ) )
31, 1, 2syl2anc 391 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R x  <->  x ( R  i^i  ( A  X.  A ) ) x ) )
43notbid 592 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  ( -.  x R x  <->  -.  x
( R  i^i  ( A  X.  A ) ) x ) )
5 brinxp 4408 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
65adantr 261 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R y  <->  x ( R  i^i  ( A  X.  A ) ) y ) )
7 brinxp 4408 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y R z  <-> 
y ( R  i^i  ( A  X.  A
) ) z ) )
87adantll 445 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
y R z  <->  y ( R  i^i  ( A  X.  A ) ) z ) )
96, 8anbi12d 442 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( x R y  /\  y R z )  <->  ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z ) ) )
10 brinxp 4408 . . . . . . . 8  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
1110adantlr 446 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R z  <->  x ( R  i^i  ( A  X.  A ) ) z ) )
129, 11imbi12d 223 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( (
x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) )
134, 12anbi12d 442 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) ) )
1413ralbidva 2322 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1514ralbidva 2322 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1615ralbiia 2338 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
17 df-po 4033 . 2  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
18 df-po 4033 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
1916, 17, 183bitr4i 201 1  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    e. wcel 1393   A.wral 2306    i^i cin 2916   class class class wbr 3764    Po wpo 4031    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-po 4033  df-xp 4351
This theorem is referenced by:  soinxp  4410
  Copyright terms: Public domain W3C validator