ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy Structured version   Unicode version

Theorem nfriotadxy 5419
Description: Deduction version of nfriota 5420. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1  F/
nfriotadxy.2  F/
nfriotadxy.3  F/_
Assertion
Ref Expression
nfriotadxy  F/_ iota_
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5411 . 2  iota_  iota
2 nfriotadxy.1 . . 3  F/
3 nfcv 2175 . . . . . 6  F/_
43a1i 9 . . . . 5  F/_
5 nfriotadxy.3 . . . . 5  F/_
64, 5nfeld 2190 . . . 4  F/
7 nfriotadxy.2 . . . 4  F/
86, 7nfand 1457 . . 3  F/
92, 8nfiotadxy 4813 . 2  F/_ iota
101, 9nfcxfrd 2173 1  F/_ iota_
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   F/wnf 1346   wcel 1390   F/_wnfc 2162   iotacio 4808   iota_crio 5410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-sn 3373  df-uni 3572  df-iota 4810  df-riota 5411
This theorem is referenced by:  nfriota  5420
  Copyright terms: Public domain W3C validator