ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy Structured version   Unicode version

Theorem nfriotadxy 5400
Description: Deduction version of nfriota 5401. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1  F/
nfriotadxy.2  F/
nfriotadxy.3  F/_
Assertion
Ref Expression
nfriotadxy  F/_ iota_
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5393 . 2  iota_  iota
2 nfriotadxy.1 . . 3  F/
3 nfcv 2160 . . . . . 6  F/_
43a1i 9 . . . . 5  F/_
5 nfriotadxy.3 . . . . 5  F/_
64, 5nfeld 2175 . . . 4  F/
7 nfriotadxy.2 . . . 4  F/
86, 7nfand 1442 . . 3  F/
92, 8nfiotadxy 4797 . 2  F/_ iota
101, 9nfcxfrd 2158 1  F/_ iota_
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   F/wnf 1329   wcel 1374   F/_wnfc 2147   iotacio 4792   iota_crio 5392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-rex 2290  df-sn 3356  df-uni 3555  df-iota 4794  df-riota 5393
This theorem is referenced by:  nfriota  5401
  Copyright terms: Public domain W3C validator