Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexdya | Unicode version |
Description: Not-free for restricted existential quantification where and are distinct. See nfrexdxy 2357 for a version with and distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfraldya.2 | |
nfraldya.3 | |
nfraldya.4 |
Ref | Expression |
---|---|
nfrexdya |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2312 | . 2 | |
2 | sban 1829 | . . . . . 6 | |
3 | clelsb3 2142 | . . . . . . 7 | |
4 | 3 | anbi1i 431 | . . . . . 6 |
5 | 2, 4 | bitri 173 | . . . . 5 |
6 | 5 | exbii 1496 | . . . 4 |
7 | nfv 1421 | . . . . 5 | |
8 | 7 | sb8e 1737 | . . . 4 |
9 | df-rex 2312 | . . . 4 | |
10 | 6, 8, 9 | 3bitr4i 201 | . . 3 |
11 | nfv 1421 | . . . 4 | |
12 | nfraldya.3 | . . . 4 | |
13 | nfraldya.2 | . . . . 5 | |
14 | nfraldya.4 | . . . . 5 | |
15 | 13, 14 | nfsbd 1851 | . . . 4 |
16 | 11, 12, 15 | nfrexdxy 2357 | . . 3 |
17 | 10, 16 | nfxfrd 1364 | . 2 |
18 | 1, 17 | nfxfrd 1364 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wnf 1349 wex 1381 wcel 1393 wsb 1645 wnfc 2165 wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 |
This theorem is referenced by: nfrexya 2363 |
Copyright terms: Public domain | W3C validator |