ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 Unicode version

Theorem nfnf1 1436
Description:  x is not free in  F/ x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1  |-  F/ x F/ x ph

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1350 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfa1 1434 . 2  |-  F/ x A. x ( ph  ->  A. x ph )
31, 2nfxfr 1363 1  |-  F/ x F/ x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1241   F/wnf 1349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350
This theorem is referenced by:  nfimd  1477  nfnt  1546  nfald  1643  equs5or  1711  sbcomxyyz  1846  nfsb4t  1890  nfnfc1  2181  sbcnestgf  2897  dfnfc2  3598  bdsepnft  10007  setindft  10090  strcollnft  10109
  Copyright terms: Public domain W3C validator