Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mor Unicode version

Theorem mor 1939
 Description: Converse of mo23 1938 with an additional condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
Hypothesis
Ref Expression
mor.1
Assertion
Ref Expression
mor
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem mor
StepHypRef Expression
1 mor.1 . . 3
21sb8e 1734 . 2
3 impexp 250 . . . . 5
4 bi2.04 237 . . . . 5
53, 4bitri 173 . . . 4
652albii 1357 . . 3
7 nfs1v 1812 . . . . . 6
87nfri 1409 . . . . 5
98eximi 1488 . . . 4
10 alim 1343 . . . . . . 7
1110alimi 1341 . . . . . 6
1211a7s 1340 . . . . 5
13 exim 1487 . . . . 5
1412, 13syl 14 . . . 4
159, 14syl5com 26 . . 3
166, 15syl5bi 141 . 2
172, 16sylbi 114 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1240  wnf 1346  wex 1378  wsb 1642 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643 This theorem is referenced by:  modc  1940
 Copyright terms: Public domain W3C validator