ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iba Unicode version

Theorem iba 284
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) (Revised by NM, 24-Mar-2013.)
Assertion
Ref Expression
iba  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )

Proof of Theorem iba
StepHypRef Expression
1 pm3.21 251 . 2  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
2 simpl 102 . 2  |-  ( ( ps  /\  ph )  ->  ps )
31, 2impbid1 130 1  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  biantru  286  biantrud  288  ancrb  305  rbaibd  833  dedlem0a  875  fvopab6  5264  fressnfv  5350  tpostpos  5879  nnmword  6091  ltmpig  6437
  Copyright terms: Public domain W3C validator