Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iba | Unicode version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
iba |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 251 | . 2 | |
2 | simpl 102 | . 2 | |
3 | 1, 2 | impbid1 130 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: biantru 286 biantrud 288 ancrb 305 rbaibd 833 dedlem0a 875 fvopab6 5264 fressnfv 5350 tpostpos 5879 nnmword 6091 ltmpig 6437 |
Copyright terms: Public domain | W3C validator |