ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedlem0a Unicode version

Theorem dedlem0a 875
Description: Alternate version of dedlema 876. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Assertion
Ref Expression
dedlem0a  |-  ( ph  ->  ( ps  <->  ( ( ch  ->  ph )  ->  ( ps  /\  ph ) ) ) )

Proof of Theorem dedlem0a
StepHypRef Expression
1 iba 284 . 2  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
2 ax-1 5 . . 3  |-  ( ph  ->  ( ch  ->  ph )
)
3 biimt 230 . . 3  |-  ( ( ch  ->  ph )  -> 
( ( ps  /\  ph )  <->  ( ( ch 
->  ph )  ->  ( ps  /\  ph ) ) ) )
42, 3syl 14 . 2  |-  ( ph  ->  ( ( ps  /\  ph )  <->  ( ( ch 
->  ph )  ->  ( ps  /\  ph ) ) ) )
51, 4bitrd 177 1  |-  ( ph  ->  ( ps  <->  ( ( ch  ->  ph )  ->  ( ps  /\  ph ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator