ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimparc Unicode version

Theorem biimparc 283
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimparc  |-  ( ( ch  /\  ph )  ->  ps )

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimprcd 149 . 2  |-  ( ch 
->  ( ph  ->  ps ) )
32imp 115 1  |-  ( ( ch  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  biantr  859  elrab3t  2697  difprsnss  3502  elpw2g  3910  elon2  4113  ideqg  4487  elrnmpt1s  4584  elrnmptg  4586  fun11iun  5147  eqfnfv2  5266  fmpt  5319  elunirn  5405  tposfo2  5882  tposf12  5884  dom2lem  6252  enfii  6335  ac6sfi  6352  ltexprlemm  6698  elreal2  6907
  Copyright terms: Public domain W3C validator