Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
Ref | Expression |
---|---|
biimparc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 | |
2 | 1 | biimprcd 149 | . 2 |
3 | 2 | imp 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: biantr 859 elrab3t 2697 difprsnss 3502 elpw2g 3910 elon2 4113 ideqg 4487 elrnmpt1s 4584 elrnmptg 4586 fun11iun 5147 eqfnfv2 5266 fmpt 5319 elunirn 5405 tposfo2 5882 tposf12 5884 dom2lem 6252 enfii 6335 ac6sfi 6352 ltexprlemm 6698 elreal2 6907 |
Copyright terms: Public domain | W3C validator |