ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu Unicode version

Theorem hbeu 1921
Description: Bound-variable hypothesis builder for uniqueness. Note that 
x and  y needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
Hypothesis
Ref Expression
hbeu.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbeu  |-  ( E! y ph  ->  A. x E! y ph )

Proof of Theorem hbeu
StepHypRef Expression
1 hbeu.1 . . . 4  |-  ( ph  ->  A. x ph )
21nfi 1351 . . 3  |-  F/ x ph
32nfeu 1919 . 2  |-  F/ x E! y ph
43nfri 1412 1  |-  ( E! y ph  ->  A. x E! y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1241   E!weu 1900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903
This theorem is referenced by:  hbmo  1939  2eu7  1994
  Copyright terms: Public domain W3C validator