ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab Structured version   Unicode version

Theorem hbab 2028
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
hbab.1
Assertion
Ref Expression
hbab  {  |  }  {  |  }
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2024 . 2  {  |  }
2 hbab.1 . . 3
32hbsb 1820 . 2
41, 3hbxfrbi 1358 1  {  |  }  {  |  }
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240   wcel 1390  wsb 1642   {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024
This theorem is referenced by:  nfsab  2029
  Copyright terms: Public domain W3C validator