![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
hbab.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbab | ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2027 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
2 | hbab.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | hbsb 1823 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
4 | 1, 3 | hbxfrbi 1361 | 1 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ∈ wcel 1393 [wsb 1645 {cab 2026 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 |
This theorem is referenced by: nfsab 2032 |
Copyright terms: Public domain | W3C validator |