ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o Unicode version

Theorem f11o 5159
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1  |-  F  e. 
_V
Assertion
Ref Expression
f11o  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4  |-  F  e. 
_V
21ffoss 5158 . . 3  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
32anbi1i 431 . 2  |-  ( ( F : A --> B  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
4 df-f1 4907 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
5 dff1o3 5132 . . . . . 6  |-  ( F : A -1-1-onto-> x  <->  ( F : A -onto-> x  /\  Fun  `' F ) )
65anbi1i 431 . . . . 5  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  Fun  `' F )  /\  x  C_  B ) )
7 an32 496 . . . . 5  |-  ( ( ( F : A -onto->
x  /\  Fun  `' F
)  /\  x  C_  B
)  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
86, 7bitri 173 . . . 4  |-  ( ( F : A -1-1-onto-> x  /\  x  C_  B )  <->  ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
98exbii 1496 . . 3  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F
) )
10 19.41v 1782 . . 3  |-  ( E. x ( ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F )  <->  ( E. x ( F : A -onto-> x  /\  x  C_  B )  /\  Fun  `' F ) )
119, 10bitri 173 . 2  |-  ( E. x ( F : A
-1-1-onto-> x  /\  x  C_  B
)  <->  ( E. x
( F : A -onto->
x  /\  x  C_  B
)  /\  Fun  `' F
) )
123, 4, 113bitr4i 201 1  |-  ( F : A -1-1-> B  <->  E. x
( F : A -1-1-onto-> x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   _Vcvv 2557    C_ wss 2917   `'ccnv 4344   Fun wfun 4896   -->wf 4898   -1-1->wf1 4899   -onto->wfo 4900   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by:  domen  6232
  Copyright terms: Public domain W3C validator