ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex Unicode version

Theorem exsnrex 3413
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2560 . . . . . 6  |-  x  e. 
_V
21snid 3402 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2101 . . . . 5  |-  ( M  =  { x }  ->  ( x  e.  M  <->  x  e.  { x }
) )
42, 3mpbiri 157 . . . 4  |-  ( M  =  { x }  ->  x  e.  M )
54pm4.71ri 372 . . 3  |-  ( M  =  { x }  <->  ( x  e.  M  /\  M  =  { x } ) )
65exbii 1496 . 2  |-  ( E. x  M  =  {
x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
7 df-rex 2312 . 2  |-  ( E. x  e.  M  M  =  { x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
86, 7bitr4i 176 1  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-sn 3381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator