ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimssi Unicode version

Theorem eqimssi 2999
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1  |-  A  =  B
Assertion
Ref Expression
eqimssi  |-  A  C_  B

Proof of Theorem eqimssi
StepHypRef Expression
1 ssid 2964 . 2  |-  A  C_  A
2 eqimssi.1 . 2  |-  A  =  B
31, 2sseqtri 2977 1  |-  A  C_  B
Colors of variables: wff set class
Syntax hints:    = wceq 1243    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by:  funi  4932  fpr  5345  elfzo1  9046
  Copyright terms: Public domain W3C validator