ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2i Unicode version

Theorem eqimss2i 2994
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1
Assertion
Ref Expression
eqimss2i  C_

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 2958 . 2  C_
2 eqimssi.1 . 2
31, 2sseqtr4i 2972 1  C_
Colors of variables: wff set class
Syntax hints:   wceq 1242    C_ wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator