ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrng Unicode version

Theorem elrng 4526
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrng  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elrng
StepHypRef Expression
1 elrn2g 4525 . 2  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
2 df-br 3765 . . 3  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
32exbii 1496 . 2  |-  ( E. x  x B A  <->  E. x <. x ,  A >.  e.  B )
41, 3syl6bbr 187 1  |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   E.wex 1381    e. wcel 1393   <.cop 3378   class class class wbr 3764   ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  relelrnb  4572
  Copyright terms: Public domain W3C validator