Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifd Unicode version

Theorem eldifd 2928
 Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 2927. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eldifd.1
eldifd.2
Assertion
Ref Expression
eldifd

Proof of Theorem eldifd
StepHypRef Expression
1 eldifd.1 . 2
2 eldifd.2 . 2
3 eldif 2927 . 2
41, 2, 3sylanbrc 394 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wcel 1393   cdif 2914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920 This theorem is referenced by:  frirrg  4087  nndifsnid  6080  phpelm  6328  fidifsnid  6332  findcard2d  6348  findcard2sd  6349  diffifi  6351
 Copyright terms: Public domain W3C validator