ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq12d Unicode version

Theorem disjeq12d 3754
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disjeq1d.1  |-  ( ph  ->  A  =  B )
disjeq12d.1  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
disjeq12d  |-  ( ph  ->  (Disj  x  e.  A  C 
<-> Disj  x  e.  B  D
) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem disjeq12d
StepHypRef Expression
1 disjeq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21disjeq1d 3753 . 2  |-  ( ph  ->  (Disj  x  e.  A  C 
<-> Disj  x  e.  B  C
) )
3 disjeq12d.1 . . . 4  |-  ( ph  ->  C  =  D )
43adantr 261 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  C  =  D )
54disjeq2dv 3750 . 2  |-  ( ph  ->  (Disj  x  e.  B  C 
<-> Disj  x  e.  B  D
) )
62, 5bitrd 177 1  |-  ( ph  ->  (Disj  x  e.  A  C 
<-> Disj  x  e.  B  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393  Disj wdisj 3745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-rmo 2314  df-in 2924  df-ss 2931  df-disj 3746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator