![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjeq12d | GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
disjeq12d.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
disjeq12d | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | disjeq1d 3753 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
3 | disjeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | adantr 261 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
5 | 4 | disjeq2dv 3750 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
6 | 2, 5 | bitrd 177 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 ∈ wcel 1393 Disj wdisj 3745 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-rmo 2314 df-in 2924 df-ss 2931 df-disj 3746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |