ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2i Structured version   Unicode version

Theorem csbeq2i 2870
Description: Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2i.1  C
Assertion
Ref Expression
csbeq2i  [_  ]_  [_  ]_ C

Proof of Theorem csbeq2i
StepHypRef Expression
1 csbeq2i.1 . . . 4  C
21a1i 9 . . 3  C
32csbeq2dv 2869 . 2  [_  ]_  [_  ]_ C
43trud 1251 1  [_  ]_  [_  ]_ C
Colors of variables: wff set class
Syntax hints:   wceq 1242   wtru 1243   [_csb 2846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-sbc 2759  df-csb 2847
This theorem is referenced by:  csbvarg  2871  csbnest1g  2895  csbsng  3422  csbunig  3579  csbxpg  4364  csbcnvg  4462  csbdmg  4472  csbresg  4558  csbrng  4725  csbfv12g  5152  csbnegg  6986
  Copyright terms: Public domain W3C validator